


Ex: Complete combustion of 2-methylpropane

	ISTRY						
COMBUSTION REACTIONS							
	Predicting Products of Chemical Reactions						
This worksheet is desi decomposition, single						tions of the four basic reaction types (synthesi sustion reactions.	
a. Combustion:	C_6H_{12}		+	O_2	\rightarrow		
b. Combustion:	C_4H_6		+	O ₂	\rightarrow		
c. Combustion:	C6H10O	3	+	O ₂	\rightarrow		
1. Synthesis:		Mg	+	I_2	\rightarrow		
2. Double displaceme	ent:	$CuCl_2$	+	H_2S	\rightarrow		
3. Double displaceme	ent:	NaOH	+	HC1O4	\rightarrow		
4. Decomposition:		ZnCO3	+	heat	\rightarrow		
5. Single replacemen	t:	HC1	+	Zn	\rightarrow		
б	_	Na	+	$MgCl_2$	\rightarrow		
7	_	CaCl ₂	+	K ₂ CO ₃	\rightarrow		
8	_	К	+	$C1_2$	\rightarrow		
9	_	BaCl ₂	+	K3PO4	\rightarrow		
10		H_2SO_4	+	КОН	\rightarrow		
11		Al ₂ (CO	3)3	+	heat	\rightarrow	
12		A1	+	O ₂	\rightarrow		
13		Pb(NO3	3)2	+	кон	\rightarrow	
14	_	$\rm H_2SO_4$	+	$BaCl_2$	\rightarrow		
15		Ca	+	AgC1	\rightarrow		
16		H3PO4	+	FeBr3	\rightarrow		
17		Li	+	N_2	\rightarrow		
18		HC1	+	Mg(OH	l)2	\rightarrow	
19		Mg(OH)2	+	heat	\rightarrow	