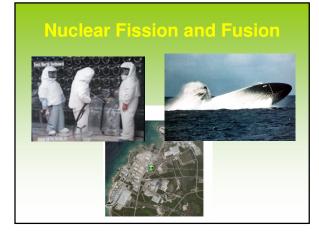



## **Radioactive Decay**

- Alpha Decay
  - Alpha decay is a type of radioactive decay in which an atomic nucleus emits an <u>alpha particle</u> (two protons and two neutrons) and thereby transforms (or 'decays') into an atom with a mass number 4 less and atomic number 2 less.

 $^{226}_{88}Ra \rightarrow ^4_2He + ^{222}_{86}Rn$ Alpha Particle







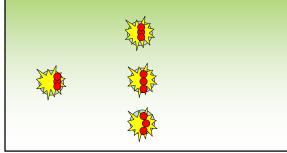

### **Radiation Poisoning**

 Radioactive waste from nuclear reactions can lead to health problems. For example, ions of the radioactive isotope strontium-90, an alkali metal, exhibit chemical behavior similar to calcium ions. This leads to incorporation of ions into bone tissue, sending ionizing radiation into the bone marrow, possible causing leukemia.





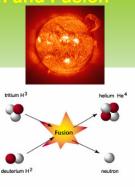
#### Nuclear Fission and Fusion


Nuclear Fission


 Nuclear fission occurs when a highly unstable isotope splits into smaller particles. Nuclear fission usually has to be induced in a particle accelerator.

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{87}_{35}Br + ^{146}_{57}La + 3^{1}_{0}n$$

# Nuclear Fission and Fusion


Nuclear Fission (A Chain Reaction)





# **Nuclear Fission and Fusion**

- Nuclear Fusion
  - Nuclear fusion occurs when a target nucleus absorbs an accelerated particle. The reaction that takes place inside the Sun, or in a hydrogen bomb is a fusion reaction. Fusion reactions require extremely high temperatures but produce an enormous amount of energy.



## Nuclear Fission and Fusion

- Nuclear Fusion
  - Unfortunately, to date, we have not yet been able to harness the energy in a fusion reaction to produce a huge amount of clean energy. However, there is hope to accomplishing this goal in the near future ...



ERROR: undefined
OFFENDING COMMAND: =frF\*

STACK: