

# CHEMISTRY

## **MOLAR MASS**

### Mass and the Mole

The importance of Avogadro's constant is that it defines a visually quantifiable amount of all elements on the periodic table; starting with hydrogen, the smallest element.

As it turns out, 1 mol of hydrogen, that is  $6.022 \times 10^{23}$  atoms, has a mass of 1 gram.

We have seen on the periodic table that each element has an atomic mass. More appropriately, this atomic mass represents the mass of 1 mol of that element; called the *molar mass*.

#### For Example:

Carbon has an atomic mass of 12 according to the periodic table.

This is saying that 1 mol of carbon atoms (6.022 x 10<sup>23</sup> atoms), is equal to 12 g. **So atomic mass ... is molar mass.** 



12 g/mol







Ca S Li C K = 40 + 32 + 7 + 12 + 39 = 130 g/mol





b) How many atoms of hydrogen are there in 36.8 g of methane?



#### **ANSWERS**

- **41.** 182 g
- 42. 11 g
- 43. 0.231 g or 231 mg
- **44.**  $5.3 \times 10^2$  mg
- **45. a.** cobalt(II) nitrate  $8.2 \times 10^{-1}$  g **b.** lead(IV) thiosulfate  $1.28 \times 10^4$  g
- **46.** a.  $NH_4NO_3 3.9 \times 10^2 g$ 
  - **b.**  $Fe_2O_3 2.59 \times 10^3 g$
- **47.**  $2.4 \times 10^2$  mg
- **48.** 1.001 kg
- **49. a.** Br<sub>2</sub> **b.**  $Sr(IO_3)_2$
- **50.** aluminum iodate
- **51.** 1.73 mol
- **52.** 139 mol
- **53.**  $8.75 \times 10^{-4}$  mol
- **54.**  $1.1 \times 10^{-4}$  mol
- **55. a.** SiO<sub>2</sub>,  $6.2 \times 10^{-5}$  mol **b.** Ti(NO<sub>3</sub>)<sub>4</sub>, 0.08577 mol **c.**  $In_2(CO_3)_3$ ,  $4.70 \times 10^{-5}$  mol **d.** 313 mol CuSO<sub>4</sub>·5H<sub>2</sub>O,
- **56.** 1.47 mol
- **57.**  $1.80 \times 10^2$  mol
- **58.**  $1.52 \times 10^{-5}$  mol
- **59.** Al(OH)<sub>3</sub>(s), AgCl(s), Ni(NO<sub>3</sub>)<sub>2</sub>(s)
- **60.** tin(IV) oxide, glucose, barium perchl