SOLUTIONS

TYPES OF SOLUTIONS

A solution is a Homogeneous Mixture. This means that it has just one phase or "uniform" throughout. Most solutions are a mixture of two substances: The Solvent and the Solute

SOLVENT:

SOLUTE:

Ex: Salt (a solute) will dissolve in Water (a solvent) to make a solution of saltwater.

Aqueous Solution: Any solution where water is the solvent.

Solubility and Saturation

Solubility is the ability of the solvent to dissolve the solute. This is accomplished by way of attractive forces. If the forces of the solvent are stronger than those of the solute, then the solute will dissolve.

There comes a point however, when the solvent can't dissolve any more solute. At this point, the solution is SATURATED.

Solubility can be increased by raising the temperature of the solvent and can be decreased by lowering the temperature of the solvent. This implies, that a saturated solution can become unsaturated and dissolve more solute if it is heated (warm water will dissolve more salt than cold water). If the solution is cooled, the opposite happens (unsaturated becomes saturated).

SOLUTIONS

THE CONCENTRATION OF SOLUTIONS

- The concentration of a solution depends on the amount of solute in a given amount of solvent. There are many different ways to measure the concentration of a solution:

Mass/Volume Percent

Mass/Volume percent is usually of the form $\mathrm{g} / 100 \mathrm{~mL}$ and can be calculated using the following formula:
Mass/Volume Percent $=\underset{\text { Volume of Solution (in } \mathrm{mL} \text {) }}{\text { Mass of Solute (in } \mathrm{g})} \times 100 \%$

Ex 1. A pharmacist adds 2.0 mL of distilled water to 4.0 g of a powdered drug. The final volume is 3.0 mL . What is the concentration of the drug in $\mathrm{g} / 100 \mathrm{~mL}$ of solution?

SOLUTIONS

Mass/Mass Percent
Mass/Mass percent is usually of the form $g / 100 g$ and can be calculated using the following formula:

$$
\text { Mass/Mass Percent }=\quad \frac{\text { Mass of Solute (in g) }}{\text { Mass of Solution (in g) }} \quad \times 100 \%
$$

Ex 2. An aqueous solution of CaCl_{2} has a total mass of 23.47 g . The solution is then boiled to remove all the water and leaves a 4.58 g mass of CaCl_{2}. What is the concentration of the solution in $\mathrm{g} / \mathrm{l} 00 \mathrm{~g}$?

Volume/Volume Percent

Volume/Volume percent is usually of the form $\mathrm{mL} / 100 \mathrm{~mL}$ and can be calculated using the following formula:

$$
\text { Volume/Volume } \%=\frac{\text { Volume of Solute (in } \mathrm{mL})}{\text { Volume of Solution (in } \mathrm{mL} \text {) }} \mathrm{X} 100 \%
$$

Ex 3. Rubbing alcohol is commonly used as an antiseptic for small cuts. It is sold as a $70 \%(\mathrm{v} / \mathrm{v})$ solution of isopropyl alcohol in water. What volume of isopropyl alcohol is used to make 500 mL of rubbing alcohol?

SOLUTIONS

Molar Concentration

The most useful unit of concentration in chemistry is molar concentration. Molar concentration is the number of moles of solute dissolved in 1 L of solvent and is referred to as Molarity. The formula for calculating molarity is:

$$
\text { Molar Concentration }(\text { in } \mathrm{mol} / \mathrm{L})=\frac{\text { Amount of Solute }(\text { in } \mathrm{mol})}{\text { Volume of Solution (in L) }}
$$

Ex. 5 A saline solution contains 0.90 g of NaCl dissolved in 100 mL of solution. What is the molarity of the solution?

Ex. 6 A solution of CaSO_{4} has a concentration of $1.53 \mathrm{~mol} / \mathrm{L}$. A student takes 65 mL of this solution and evaporates it. What mass (in g) is left in the evaporating dish?

SOLUTIONS

Pg. 381

Practice Problems

41. Find the molar concentration of each saline solution.
a. $0.60 \mathrm{~mol} \mathrm{NaCl}(\mathrm{s})$ dissolved in 0.40 L of solution
b. $0.90 \mathrm{~g} \mathrm{NaCl}(\mathrm{s})$ dissolved in 100 mL of solution
42. What volume of $0.25 \mathrm{~mol} / \mathrm{L}$ solution can be made using 14 g of sodium hydroxide?
43. Calculate the molar concentration of each solution.
a. 14 g of copper(II) sulfate, $\mathrm{CuSO}_{4}(\mathrm{~s})$, dissolved in 70 mL of solution
b. 5.07 g of sucrose, $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$, dissolved in 23.6 mL of solution
c. 1.1 g of calcium nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s})$, dissolved in 70 mL of solution
44. At $20^{\circ} \mathrm{C}$, a saturated solution of calcium sulfate, $\mathrm{CaSO}_{4}(\mathrm{aq})$, has a concentration of $0.0153 \mathrm{~mol} / \mathrm{L}$. A student takes 65 mL of this solution and evaporates it. What mass of solute should be left in the evaporating dish?
45. Find the mass of solute in each aqueous solution.
a. 28 mL of $0.045 \mathrm{~mol} / \mathrm{L}$ calcium hydroxide, $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})$
b. 50 mL of $4.0 \mathrm{~mol} / \mathrm{L}$ acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})$
c. 5.31 L of $0.675 \mathrm{~mol} / \mathrm{L}$ ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{aq})$
46. Calculate the molar concentrations of the ions in each solution.
a. 18 g of sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{~s})$, dissolved in 210 mL of solution
b. 15 g of ammonium phosphate, $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}(\mathrm{~s})$, dissolved in 98 mL of solution
c. 20 mg of calcium phosphate, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s})$, dissolved in 1.7 L of solution
47. A student dissolves 28.46 g of silver nitrate, $\mathrm{AgNO}_{3}(\mathrm{~s})$, in water to make 580 mL of solution. Find the molar concentration of the solution.

48. Formalin is an aqueous solution that is made by dissolving formaldehyde gas, $\mathrm{HCHO}(\mathrm{g})$, in water. A saturated formalin solution has a concentration of about $37 \%(\mathrm{~m} / \mathrm{v})$. This concentration is used to preserve biological specimens. Calculate the molar concentration of $37 \%(\mathrm{~m} / \mathrm{v})$ formalin.
49. What volume of a $0.555 \mathrm{~mol} / \mathrm{L}$ aqueous solution contains 12.8 g of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{aq})$?
50. Zinc oxide, $\mathrm{ZnO}(\mathrm{s})$, has a solubility of $0.16 \mathrm{mg} / 100$ mL in water at $30^{\circ} \mathrm{C}$. Find the molar concentration of a saturated solution of zinc oxide at $30^{\circ} \mathrm{C}$.
51. a. $1.5 \mathrm{~mol} / \mathrm{L}$
b. $0.2 \mathrm{~mol} / \mathrm{L}$
52. 1.4 L
53. a. $1 \mathrm{~mol} / \mathrm{L}$
b. $0.628 \mathrm{~mol} / \mathrm{L}$
c. $0.1 \mathrm{~mol} / \mathrm{L}$
54. 0.14 g
55. a. 0.093 g
b. 10 g
c. 534 g
56. a. $\mathrm{Na}^{+}(\mathrm{aq})=1.2 \mathrm{~mol} / \mathrm{L} ; \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})=0.60 \mathrm{~mol} / \mathrm{L}$
b. $\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})=3.1 \mathrm{~mol} / \mathrm{L} ; \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})=1.0 \mathrm{~mol} / \mathrm{L}$
57. $0.29 \mathrm{~mol} / \mathrm{L}$
58. $12 \mathrm{~mol} / \mathrm{L}$
59. 218 mL
60. $2.0 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
