In the chemical storage area of the lab, many solutions are on the shelf at a specific concentration from the supplier. This is called the Standard Solution.

Most of the time, the standard solution is very concentrated and needs to be diluted so it lasts longer and is safer to use.

Diluting a Solution:

Ex:

The formula for diluting a solution is as follows:

$C_{1} V_{1}=C_{2} V_{2} \frac{C_{1}-}{}$| $V_{1}-$ |
| :--- |
| $\frac{C_{2}-}{}$ |
| $V_{2}-$ |

PREPARING SOLUTIONS

Ex: For a Lab, Mr. Caslick must make 2.0 L of 0.10 M sulfuric acid. The standard solution in the storage cabinet is 18 M . What volume of the concentrated standard solution is needed?

Ex: Stock HCl has a concentration of 12 M . If you took 20 mL of it and mixed it with 480 mL of water, what would the concentration of your diluted solution be?

Practice Problems

51. Suppose that you are given a stock solution of $1.50 \mathrm{~mol} / \mathrm{L}$ ammonium sulfate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$. What volume of the stock solution do you need to use to prepare each of the following solutions?
a. 50.0 mL of $1.00 \mathrm{~mol} / \mathrm{L}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
b. 200 mL of $0.800 \mathrm{~mol} / \mathrm{L}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})$
c. 250 mL of $0.300 \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{4}{ }^{+}(\mathrm{aq})$
52. What is the concentration of the solution that is obtained by diluting 60.0 mL of $0.580 \mathrm{~mol} / \mathrm{L}$ potassium hydroxide to each of the following volumes?
a. 350 mL
b. 180 mL
c. 3.00 L
53. What volume of a $1.60 \mathrm{~mol} / \mathrm{L}$ stock solution of calcium chloride, $\mathrm{CaCl}_{2}(\mathrm{aq})$, would you use to make 0.500 L of a $0.300 \mathrm{~mol} / \mathrm{L}$ solution?
54. Water is added to 100 mL of $0.15 \mathrm{~mol} / \mathrm{L}$ sodium nitrate, $\mathrm{NaNO}_{3}(\mathrm{aq})$, to make 700 mL of diluted solution. Calculate the molar concentration of the diluted solution.
55. A solution is made by diluting 25 mL of $0.34 \mathrm{~mol} / \mathrm{L}$ calcium nitrate, $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$, solution to 100 mL . Calculate the following concentrations for the solution:
a. the concentration of calcium nitrate
b. the concentration of nitrate ions
56. A laboratory stockroom has a stock solution of $90 \%(\mathrm{~m} / \mathrm{v})$ sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$. If a technician
57. a. 33.3 mL
b. 107 mL
c. 25 mL
58. a. $0.99 \mathrm{~mol} / \mathrm{L}$
b. $0.19 \mathrm{~mol} / \mathrm{L}$
c. $0.0116 \mathrm{~mol} / \mathrm{L}$
59. 0.0938 L
60. $0.02 \mathrm{~mol} / \mathrm{L}$
61. a. $0.08 \mathrm{~mol} / \mathrm{L}$
b. $0.2 \mathrm{~mol} / \mathrm{L}$
62. 15% (m/v)
63. $3.00 \times 10^{2} \mathrm{~mL}$
64. 0.5 L ; about 0.5 L
65. a. Mass $2.1 \mathrm{~g} \mathrm{AgNO}_{3}$ (s)
b. Mass $6.05 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ (s)
c. Mass $12.6 \mathrm{~g} \mathrm{KMnO}_{4}(\mathrm{~s})$
66. All parts: Your procedure should be similar to the procedur outlined in Table 8.8.
a. Dilute 29 mL
b. Dilute 7.5 mL
c. Dilute 945 mL
