

CHEMISTRY

PREPARING SOLUTIONS

In the chemical storage area of the lab, many solutions are on the shelf at a specific concentration from the supplier. This is called the *Standard Solution*.

Most of the time, the standard solution is very concentrated and needs to be *diluted* so it lasts longer and is safer to use.

Diluting a Solution:

Ex:

The formula for diluting a solution is as follows:

$$C_1V_1 = C_2V_2$$

C ₁ -	
V ₁ –	
C ₂ - 7	
V ₂ –	

CHEMISTRY

PREPARING SOLUTIONS

Ex: For a Lab, Mr. Caslick must make 2.0 L of 0.10 M sulfuric acid. The standard solution in the storage cabinet is 18 M. What volume of the concentrated standard solution is needed?

Ex: Stock HCl has a concentration of 12 M. If you took 20 mL of it and mixed it with 480 mL of water, what would the concentration of your diluted solution be?

CHEMISTRY

PREPARING SOLUTIONS

Pg. 386

Practice Problems

- 51. Suppose that you are given a stock solution of 1.50 mol/L ammonium sulfate, (NH₄)₂SO₄(aq). What volume of the stock solution do you need to use to prepare each of the following solutions?
 - a. 50.0 mL of 1.00 mol/L (NH₄)₂SO₄(aq)
 - **b.** 200 mL of 0.800 mol/L (NH₄)₂SO₄(aq)
 - c. 250 mL of 0.300 mol/L NH₄+(aq)
- **52.** What is the concentration of the solution that is obtained by diluting 60.0 mL of 0.580 mol/L potassium hydroxide to each of the following volumes?
 - a. 350 mL
 - **b.** 180 mL
 - c. 3.00 L
- 53. What volume of a 1.60 mol/L stock solution of calcium chloride, CaCl₂(aq), would you use to make 0.500 L of a 0.300 mol/L solution?
- 54. Water is added to 100 mL of 0.15 mol/L sodium nitrate, NaNO₃(aq), to make 700 mL of diluted solution. Calculate the molar concentration of the diluted solution.
- 55. A solution is made by diluting 25 mL of 0.34 mol/L calcium nitrate, Ca(NO₃)₂(aq), solution to 100 mL. Calculate the following concentrations for the solution:
 - a. the concentration of calcium nitrate
 b. the concentration of nitrate ions
- 56. A laboratory stockroom has a stock solution of 90% (m/v) sulfuric acid, H₂SO₄(aq). If a technician

- dilutes 50 mL of the stock solution to a final volume of 300 mL, what will be the new mass/volume percent concentration? (Hint: The dilution formula can be used for concentration expressed in any units, provided that the units remain the same.)
- 57. What volume of 1.25 mol/L potassium iodide solution can you make with 125 mL of 3.00 mol/L potassium iodide solution?
- 58. Hydrochloric acid is available as a stock solution with a concentration of 10 mol/L. If you need 1.0 L of 5.0 mol/L hydrochloric acid, what volume of stock solution should you measure out? Approximately how much distilled water will you need to make the dilution?
- 59. Write a procedure you could use to make each aqueous solution using a solid solute.
 - a. 50 mL of 0.25 mol/L silver nitrate, AgNO₃(aq)
 - b. 125 mL of 0.350 mol/L potassium carbonate, K₂CO₃(aq)
 - c. 400 mL of 0.200 mol/L potassium permanganate, KMnO₄(aq)
- 60. Outline a procedure for making each aqueous solution by diluting a stock solution.
 - a. 0.50 L of 1.0 mol/L sodium hydroxide, NaOH(aq), using 17 mol/L sodium hydroxide
 - **b.** 150 mL of 0.300 mol/L ammonia, $NH_3(aq)$, using 6.0 mol/L ammonia
 - c. 1.75 L of 0.0675 mol/L ammonium bromide, NH₄Br(aq), using 0.125 mol/L ammonium bromide

- 51. a. 33.3 mL
 - **b.** 107 mL
 - c. 25 mL
- 52. a. 0.99 mol/L
 - **b.** 0.19 mol/L
 - c. 0.0116 mol/L
- 53. 0.0938 L
- 54. 0.02 mol/L
- 55. a. 0.08 mol/L
 - **b.** 0.2 mol/L
- 56. 15% (m/v)
- **57.** $3.00 \times 10^2 \,\mathrm{mL}$
- 50 ost 1 tos
- 58. 0.5 L; about 0.5 L
- 59. a. Mass 2.1 g AgNO₃(s)
 - **b.** Mass 6.05 g K₂CO₃(s)
 - c. Mass 12.6 g KMnO₄(s)
- All parts: Your procedure should be similar to the procedur outlined in Table 8.8.
 - a. Dilute 29 mL
 - b. Dilute 7.5 mL
 - c. Dilute 945 mL