Naming Acids and Their Anions

There are two main kinds of acids: binary acids and oxoacids. A Binary Acid is composed of two elements: hydrogen and a nonmetal. The names of binary acids are made up of the following parts:

- The prefix "hydro-"
- A root that is formed from the name of the non-metal
- The suffix "-ic"

Binary Acid	Prefix	Non-metal root	Suffix
HF	Hydro-	-fluor-	-ic
HCl	Hydro-	-chlor-	-ic
$\mathrm{H}_{2} \mathrm{~S}$	Hydro-	-sulfur-	-ic

An Oxoacid (also called oxyacids) is an acid formed from a polyatomic ion that contains oxygen, hydrogen, and another element. The naming of these polyatomic ions follow specific rules based on the number of oxygen atoms they have:

Anion	Normal Prefix/Suffix	Acid PrefixISuffix
$\mathrm{ClO}_{3}^{-}(x)$	chlorATE	chlorIC
$\mathrm{ClO}_{4}^{-}(x+1)$	PERchlorATE	PERchlorIC
$\mathrm{ClO}_{2}^{-}(x-1)$	chlorITE	chlorOUS
$\mathrm{ClO}^{-}(x-2)$	HYPOchlorITE	HYPOchlorOUS

Ex: Name the following acids:

1. HClO_{2}
2. HClO_{4}
3. $\mathrm{H}_{2} \mathrm{SO}_{3}$
4. $\mathrm{H}_{3} \mathrm{PO}_{5}$

Ex: Write the formula of the following acids:

1. Carbonic Acid
2. Nitrous Acid
3. Hypochlorous Acid
4. Hypophosphorous Acid

NAMING ACIDS AND CALCULATING pH

Calculating pH

The term pH represents the "presence of hydrogen".
The concentration of hydrogen ions ranges from about 10 M for a strong acid to about $10^{-15} \mathrm{M}$ for a strong base.

Using the concentration of hydrogen, Soren Sorensen (I did not make this name up) developed the pH scale using the following calculation:

$$
p H=-\log \left[H^{+}\right]
$$

... where $[H+]$ is the concentration of hydrogen ions in solution.
Ex: It is determined that a solution has a hydrogen concentration of $1.0 \times 10^{-7} \mathrm{M}$. What is the pH of the solution?

Ex: 0.00125 mol of hydrogen ions are found in 5 L of aqueous solution. What is the pH ?

Ex: 0.0000125 M of sulfurous acid solution. What is the pH ?

Calculating Concentration from pH

As we have seen, one can calculate pH by using the concentration of hydrogen ions in solution. The reverse can be accomplished as well. That is, the concentration of hydrogen ions can be achieved by using the known pH . The formula is as follows:

$$
\left[\mathrm{H}^{+}\right]=10-\mathrm{pH}
$$

Ex: What is the concentration of $\left[\mathrm{H}^{+}\right]$in a basic solution with a pH of 12 ?

Watch out for polyprotic acids!!!

Ex: What is the concentration of $\mathrm{H}_{2} \mathrm{SO}_{4}$ if it has a pH of 1 ?

The pOH is the concentration of hydroxide in solution. The pOH value is opposite to the pH value.

Example: If you have a pH of $12 \ldots$ you have a pOH of 2

$$
\begin{aligned}
& \mathrm{pH}=14-\mathrm{pOH} \\
& \mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

Example: What is the pH of a solution of 0.005 M LiOH ?

Example: What will be the resulting pH when 50 mL of 0.025 M $\mathrm{H}_{2} \mathrm{CO}_{3}$ is mixed with 50 mL of 0.06 M NaOH ?

Example: What is the pH of a solution of 0.005 M LiOH ?

ACIDIC COMPOUNDS:
Names and Formulas

1. Write the formulas for the following compounds.
a. Carbonic acid
b. Nitric acid \qquad
c. Sulphurous acid \qquad
\qquad
d. Perchloric acid
e. Hydrosulfuric acid \qquad
f. Hydrocarbonic \qquad
g. Hypophosphorous acid \qquad
h. Hypochlorous acid \qquad
i. Pernitric acid \qquad
j. Hydroiodic acid \qquad
2. Write the names for the following compounds.
a. $\mathrm{H}_{2} \mathrm{SO}_{4}$ \qquad
b. HClO_{2} \qquad
c. $\mathrm{H}_{2} \mathrm{SO}_{2}$ \qquad
d. $\mathrm{H}_{2} \mathrm{CO}_{4}$ \qquad
e. $\mathrm{H}_{2} \mathrm{SO}_{2}$ \qquad
f. HNO_{3} \qquad
g. $\mathrm{H}_{3} \mathrm{PO}_{4}$ \qquad
h. HClO_{2} \qquad
i. $\mathrm{H}_{2} \mathrm{~S}$ \qquad
j. HClO_{4} \qquad
k. hypochlorous acid
3. nitrous acid
m. carbonous acid \qquad
n. hydrochloric acid \qquad
o. hydronitric acid \qquad
p. chloric acid
q. phosphorous acid \qquad
r. hydrogen hydroxide \qquad
s. hydrophosphoric acid \qquad
t. sulphuric acid \qquad
k. $\mathrm{H}_{2} \mathrm{SO}_{3}$ \qquad
4. HOH \qquad
m. $\mathrm{H}_{3} \mathrm{PO}_{2}$ \qquad
n. HNO_{4} \qquad
o. HClO_{3} \qquad
p. HClO \qquad
q. $\mathrm{H}_{2} \mathrm{CO}_{2}$ \qquad
r. HCl \qquad
s. HBr \qquad
t. $\mathrm{H}_{2} \mathrm{SO}_{5}$ \qquad
