

Charles Law

In 1802, Charles' Law was stated as:

- The volume of a fixed mass of gas is proportional to its temperature when the pressure is kept constant.
\rightarrow As temperature INCREASES, volume INCREASES.

$$
V \alpha T
$$

Algebra then leads to ...

Ex: Using a syringe, a chemist draws $25.5 \mathrm{~cm}^{3}$ of oxygen at $20^{\circ} \mathrm{C}$ and heats the syringe in an oven up to $65^{\circ} \mathrm{C}$. Assuming the atmospheric pressure remains the same, what volume will the oxygen occupy?

Ex: A balloon is filled with 2.50 L of helium at $23.5^{\circ} \mathrm{C}$. The balloon is placed in a freezer overnight and the final volume is observed to be 2.15 L What was the temperature inside the freezer (in celcius)?

GAS LAWS - PART 2
GAY-LUSSAC'S LAW
Gay-Lussac's Law states that:

- The pressure of a fixed amount of gas, at constant volume, is directly proportional to its Kelvin temperature.
\rightarrow As temperature INCREASES, pressure INCREASES.

$$
P \alpha T
$$

Algebra then leads to ...

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}} \quad \frac{T_{1}-\text { Initial Temperature }}{} \quad \begin{aligned}
& \text { must be in } \mathrm{K} \\
& \frac{P_{1}-\text { Initial Pressure }}{T_{2}-\text { Final Temperature }} \\
& P_{2}-\text { Final Pressure } \\
& \text { must be in } \mathrm{K}
\end{aligned}
$$

http://phet.colorado.edu/en/simulation/gas-properties
http://www.youtube.com/watch?v=9bU-I2ZiML0

Ex: A cylinder of chlorine gas is designed to withstand 50 atm of pressure. The pressure gauge reads 35.0 atm at $23.5^{\circ} \mathrm{C}$. If one were to place this cylinder in a fire, raising its temperature to $87.5^{\circ} \mathrm{C}$, what would the pressure gauge read?

GAS LAWS - PART 2

Pg. 522 \#11-20

Pg. 525 \#21-30

Practice Problems

Note: Assume that the pressure and amount of gas are constant in all of the problems except question 20.
11. A gas has a volume of 6.0 L at a temperature of 250 K . What volume will the gas have at 450 K ?
12. A syringe is filled with 30.0 mL of air at 298.15 K . If the temperature is raised to 353.25 K , what volume will the syringe indicate?
13. The temperature of a 2.25 L sample of gas decreases from $35.0^{\circ} \mathrm{C}$ to $20.0^{\circ} \mathrm{C}$. What is the new volume?
14. A balloon is inflated with air in a room in which the air temperature is $27^{\circ} \mathrm{C}$. When the balloon is placed in a freezer at $-20.0^{\circ} \mathrm{C}$, the volume is 80.0 L . What was the original volume of the balloon?
15. At a summer outdoor air temperature of $30.0^{\circ} \mathrm{C}$, a particular size of bicycle tire has an interior volume of $685 \mathrm{~cm}^{3}$. The bicycle has been left outside in the winter and the outdoor air temperature drops to $-25.0^{\circ} \mathrm{C}$. Assuming the tire had been filled with air in the summer, to what volume would the tire be reduced at the winter air temperature?
16. At 275 K , a gas has a volume of 25.5 mL . What is its temperature if its volume increases to 50.0 mL ?
17. A sealed syringe contains 37.0 mL of trapped air. The temperature of the air in the syringe is 295 K . The sun shines on the syringe, causing the temperature of the air inside it to increase. If the volume increases to 38.6 mL , what is the new temperature of the air in the syringe?
18. A beach ball is inflated to a volume of 25 L of air in the cool of the morning at $15^{\circ} \mathrm{C}$. During the afternoon, the volume changes to 26 L . What was the Celsius air temperature in the afternoon?
19. The volume of a 1.50 L balloon at room temperature increases by 25.0 percent when placed in a hot-water bath. How does the temperature of the water bath compare with room temperature?
20. Compressed gases can be condensed when they are cooled. A $5.00 \times 10^{2} \mathrm{~mL}$ sample of carbon dioxide gas at room temperature (assume $25.0^{\circ} \mathrm{C}$) is compressed by a factor of four, and then is cooled so that its volume is reduced to 25.0 mL . What must the final temperature be (in ${ }^{\circ} \mathrm{C}$)? (Hint: Use both Boyle's law and Charles's law to answer the question.)
11. 11 L
12. 35.5 mL
13. 1.29 L
14. 95 L
15. $561 \mathrm{~cm}^{3}$
16. 539 K
17. 308 K
18. $27^{\circ} \mathrm{C}$
19. 1.25 times room temperature
20. $-214^{\circ} \mathrm{C}$

GAS LAWS - PART 2

Pg. 525 \#21-30

Practice Problems

Note: Assume that the volume and amount of gas are constant in all of the following problems.
21. A gas is at 105 kPa and 300.0 K . What is the pressure of the gas at 120.0 K ?
22. The pressure of a gas in a sealed canister is 350.0 kPa at a room temperature of 298 K . The canister is placed in a refrigerator and the temperature of the gas is reduced to 278 K . What is the new pressure of the gas in the canister?
23. A propane barbeque tank is filled in the winter at $-15.0^{\circ} \mathrm{C}$ to a pressure of 2500 kPa . What will the pressure of the propane become in the summer when the air temperature rises to $20.0^{\circ} \mathrm{C}$?
24. A rubber automobile tire contains air at a pressure of 370 kPa at $15.0^{\circ} \mathrm{C}$. As the tire heats up, the temperature of the air inside the tire rises to $60.0^{\circ} \mathrm{C}$. What would the new pressure in the tire be?
25. A partially filled aerosol can has an internal pressure of 14.8 psi when the temperature is $20.0^{\circ} \mathrm{C}$.
a. What would the pressure in the can be, in kPa , if it were placed into an incinerator for disposal, which would have the effect of raising the temperature inside the can to $1800^{\circ} \mathrm{C}$?
b. Approximately how many times higher is that new pressure compared to standard atmospheric pressure?
26. A sealed can of gas is left near a heater, which causes the pressure of the gas to increase to 1.4 atm . What was the original pressure of the gas if its temperature change was from $20.0^{\circ} \mathrm{C}$ to $90.0^{\circ} \mathrm{C}$?
27. Helium gas in a 2.00 L cylinder has a pressure of 1.12 atm . When the temperature is changed to 310.0 K , that same gas sample has a pressure of 2.56 atm . What was the initial temperature of the gas in the cylinder?
28. A sample of neon gas is contained in a bulb at $150^{\circ} \mathrm{C}$ and 350 kPa . If the pressure drops to 103 kPa , find the new temperature, in ${ }^{\circ} \mathrm{C}$.
29. A storage tank is designed to hold a fixed volume of butane gas at $2.00 \times 10^{2} \mathrm{kPa}$ and $39.0^{\circ} \mathrm{C}$. To prevent dangerous pressure buildup, the tank has a relief valve that opens at $3.50 \times 10^{2} \mathrm{kPa}$. At what Celsius temperature does the valve open?
30. If a gas sample has a pressure of 30.7 kPa at $0.00^{\circ} \mathrm{C}$, by how many degrees Celsius does the temperature have to increase to cause the pressure to double?

```
21. 42.0 kPa
22. 327 kPa
23. 2800 kPa
24.430 kPa
25. a. 720 kPa
    b. about }7\mathrm{ times higher
```

26. 1.1 atm
27. 136 K
28. $-150^{\circ} \mathrm{C}$
29. $273^{\circ} \mathrm{C}$
30. $273^{\circ} \mathrm{C}$
