PHYSICS

VELOCITY-TIME GRAPHS

Learning Goals

B2.3 - Use a v-t graph to derive the equation for average velocity and the equations for displacement.

Success Criteria

\square How does a VT graph relate to a DT graph?
What does the slope on a VT graph represent?
\square What does the area under the VT graph represent?
What would a horizontal line on a VT graph represent?
\square What would a positive slope represent on a VT graph? What would a negative slope represent on a VT graph?
\square What would a curved line represent on a VT graph?

PHYSICS

VELOCITY-TIME GRAPHS

VELOCITY-TIME GRAPHS AND ACCELERATION

Recall: A position-time graph, or a distance-time graph, plots an object's displacement verses the time it takes that object to achieve that displacement.

In the same way, a velocity-time graph plots an object's velocity verses time, with the velocity on the y-axis and the time on the x -axis.

Ex: An object starting from rest is moving at the following velocities

Velocity $(\mathbf{m} / \mathbf{s}[\mathbf{N}])$	0	10	20	30	40	40	40	20	0
Time (s)	0	1	2	3	4	5	6	7	8

VELOCITY-TIME GRAPHS

We can use this v-t graph to find the acceleration and displacement

Difference between DT Graphs and VT Graphs
Constant Speed

Stopped

Acceleration

4. The following graph is that of an object moving in a straight line. East is considered as the positive direction.
a. Determine the position of the object after 7.0 s . $(-10 \mathrm{~m})$
b. The graph shows five distinct sections. Briefly, and in general terms, describe the motion of the object in each of these sections.
c. Considering the whole journey, calculate the average velocity. $(1.4 \mathrm{~m} / \mathrm{s})$
d. Find the instantaneous velocity at $t=13 \mathrm{~s} .(8 \mathrm{~m} / \mathrm{s})$
e. Using an appropriate scale, draw a velocity-time graph from the position-time graph.

5. This graph below describes the motion of an object moving in a straight line. At the beginning it is going east. From the graph determine each of the following.
a. the object's displacement in the first $3.0 \mathrm{~s}(200 \mathrm{~m}[E])$
b. the object's displacement between $t=3.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$ (0)
c. the total displacement of the object in $14 \mathrm{~s}(0)$
d. the average velocity of the object from $t=0$ to $t=8.0 \mathrm{~s}(17.5 \mathrm{~m} / \mathrm{s}[E])$

1.10 - Velocity-Time Graphs

PHYSICS

7. The slope of the displacement-time graph is
8. The slope of the velocity-time graph is
9. The area under the acceleration-time graph is
10. The area under the velocity-time graph is

HOMEWORK

Answer the next series of questions using the following displacement-time graph.

11. How far does the object travel during the first 5 seconds (1 to $5 s$)?
12. How far does the object travel during the second 5 seconds (5 to 10 s)?
13. How far does the object travel during the third 5 seconds (10 to 15 s)?
14. How far does the object travel during the fourth 5 seconds (15 to 20 s)?
\qquad
\qquad
15. How far does the object travel during the last 10 seconds (20 to 30 s)?
\qquad
16. During which time interval(s) is the object standing still?
17. Does the car ever accelerate in this scenario?
18. Draw the velocity time graph for the above scenario.

Answer the next series of questions using the following velocity-time graph.

19. During which interval(s) is the object accelerating?
20. During which interval(s) is the acceleration the greatest?
\qquad
\qquad
21. During which interval(s) is the object standing still?
22. During which intervals does the object have the same speed? \qquad
23. What is the displacement during interval A ? \qquad
24. What is the displacement during interval \mathbf{B} ? \qquad
25. What is the displacement during interval \mathbf{C} ? \qquad
26. What is the displacement during interval \mathbf{D} ? \qquad
27. What is the displacement during interval \mathbf{E} ? \qquad

1. What are the accelerations of this object throughout this motion. In section 5 , how would you describe the acceleration before 98 seconds verses after 98 seconds?
2. What is the total displacement of this object?
1.10 - Velocity-Time Graphs

