Learning Goals
B1.1 - Analyse technologies that apply the concepts related to kinematics.

B2.1 - Use appropriate terminology related to kinematics.
B3.1 - Distinguish between the terms constant, instantaneous, and average with reference to speed.

Success Criteria

\squareUnderstand the concepts of Distance, Speed and Time.

\squareKnow the mathematical relationship between these variables and how to use it to solve for a missing variable.

\squareBe able to convert distance and time units.

SPEED

Speed is a measure of how fast something is moving. Speed is said to be a scalar quantity as it does not have a direction associated with it. Ex. The cyclist reached a speed of $12.0 \mathrm{~m} / \mathrm{s}$ during the race.

Speed can be written as a mathematical function involving the quantities distance and time.

$$
v=\frac{d}{t} \quad \begin{gathered}
v-\text { Speed } \\
\hline t-\text { Distance } \\
t-\text { Time }
\end{gathered}
$$

In order to problem solve with a high rate of efficiency you must G.U.E.S.S.
$\boldsymbol{G}=$ Givens
$\boldsymbol{U}=$ Unknov
$\boldsymbol{E}=$ Equatio
$S=$ Solve
$\boldsymbol{S}=$ Statem c

SPEED

Ex 1. Calculate the time required to drive from Windsor to Toronto and back if the distance between Windsor and Toronto is 350 km and you drive an average speed of $95 \mathrm{~km} / \mathrm{h}$.

Ex 2. Commercial airplanes travel at speeds close to $1000 \mathrm{~km} / \mathrm{h}$, how far does a plane travel in 30 seconds?

Ex 3. A snail can slime its way about 14.2 m in and hour.
a) What is the snail's speed in m / s ?
b) What is the snail's speed in km / h ?

1.2 - Speed

HOMEWORK

SPEED PROBLEMS

1. Solve for the missing values in the following table

Trial	Distance	Time	Speed
1	75.0 m	6.65 s	
2	3050 km		$85 \mathrm{~km} / \mathrm{h}$
3		15.2 s	$12.2 \mathrm{~m} / \mathrm{s}$
4	250 m	13.5 s	
5		6.65 h	$75 \mathrm{~km} / \mathrm{h}$
6	450 m		$8.85 \mathrm{~m} / \mathrm{s}$

2. Calculate the speed of sound, given that a clap of thunder is heard by an observer 1.5 km away, 4.6 s after the lightning that produced it is seen.
3. How far is the moon from the Earth, given that fadio waves traveling at the speed of light $\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ take 1.28 s to reach the moon?
4. How long does it take light from the sun to reach Earth if it must travel $1.5 \times 10^{8} \mathrm{~km}$ at the speed of light $\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$?
5. In 1997, Thrust SSC, the world's fastest jet-engine car, traveled 604 m at an awerage speed of $341 \mathrm{~m} / \mathrm{s}$.
a. What length of time did this take?
b. Convert $341 \mathrm{~m} / \mathrm{s}$ into km / h.

Speed, Distance, Time Worksheet.

1. A girl cycles for 3 hrs at a speed of $40 \mathrm{~km} / \mathrm{h}$. What distance did she travel?
2. A train travels at a speed of 30 mph and travel a distance of 240 miles. How long did it take the train to complete it's journey?
3. A car travels a distance of 540 km in 6 hours. What speed did it travel at?
4. John is a runner. He runs the 100 m sprint in 10.6 s . What speed did he travel at? (in m / s)
5. A cyclist travels 20 km in 4 hrs . What speed did the cyclist cycle at?
6. The distance between two cities is 144 km , it takes me 3hours to travel between these cities. What speed did I travel at?
7. A coach travels from the station to the beach, a distance of 576 km away in 6 hrs . The coach is only allowed to travel at a maximum speed of $90 \mathrm{~km} / \mathrm{h}$. Did the coach break the speed limit?
8. At the equator, the earth spins a distance of 40000 km every day. What speed does the Earth spin at in km / h ?
9. Lauren walks 100 m in half a minute. What must her speed have been to travel this distance?
10. A mouse runs a distance of 2 metres in 15 seconds. What is it's speed?
11. Jim travelled at a speed of $18 \mathrm{~km} / \mathrm{h}$ for 2 hours. What was the distance covered?
12. Marc was told his dinner would be ready at 18:00. He left his house at 12:00 and travelled in his car at an average speed of 45 mph to his mum's house 300 miles away. Did Marc make it home in time for dinner?
13. A whale swims at a constant speed of $8 \mathrm{~m} / \mathrm{s}$ for 17 s . What distance did it travel?
