1.3 - Distance-Time Graphs

PHYSICS
 DISTANCE-TIME GRAPHS

Learning Goals
B2.2 - Analyse and interpret position-time graphs of motion in one dimension.

Success Criteria

\square What is a D-T graph?

What does the SLOPE mean on a D-T Graph?
\square What is the relationship between slope and speed?
\square Is it possible to have a vertical line on an D-T Graph?
\square What does a horizontal slope on a D-T Graph mean?What is happening if the D-T Graph curves?

1.3 - Distance-Time Graphs

PHYSICS

DISTANCE-TIME GRAPHS

A Distance-Time graph (or DT graph), is a graph that represents an object's motion. If the motion involves direction then it is a Displacement-Time graph (or Position-Time Graph). The general form looks like the following:

Ex: Graph the following on a distance-time graph

Time (s)	0	1	2	3	4	5	6	7	8
Distance (m)	0	2	4	6	8	8	8	4	0

1.3 - Distance-Time Graphs

PHYSICS

DISTANCE-TIME GRAPHS

In order to calculate the speed using a distance-time graph one must find the SLOPE of the graph.
1.3 - Distance-Time Graphs

PHYSICS
DISTANCE-TIME GRAPHS

SLOPE FACTS:
1.

2.

3.
4.

5.

1.3 - Distance-Time Graphs

PHYSICS

HOMEWORK

Motion Graphs Worksheet

1. Find the velocity in each section of the following position-time graph. $(-2.5 \mathrm{~m} / \mathrm{s}, 0$, $10 \mathrm{~m} / \mathrm{s},-3.8 \mathrm{~m} / \mathrm{s}, 0,8.8 \mathrm{~m} / \mathrm{s})$
$d(\mathrm{~m})$

2. Using the graph below, determine the average velocity for these intervals:
a. $\mathrm{AB}(15 \mathrm{~km} / \mathrm{h})$
b. $\mathrm{AD}(5.0 \mathrm{~km} / \mathrm{h})$
c. $\mathrm{BD}(2.5 \mathrm{~km} / \mathrm{h})$

3. Using the graph below, determine the average velocity for each of the following sections.
a. $\quad t=0 \mathrm{~s}$ to $t=2 \mathrm{~s}(10 \mathrm{~m} / \mathrm{s})$
b. $t=6 \mathrm{~s}$ to $t=12 \mathrm{~s}(-5.8 \mathrm{~m} / \mathrm{s})$
c. $t=6 \mathrm{~s}$ to $t=15.5 \mathrm{~s}$ (0)

1.3 - Distance-Time Graphs

PHYSICS

HOMEWORK

4. The following graph is that of an object moving in a straight line. East is considered as the positive direction.
a. Determine the position of the object after 7.0 s . $(-10 \mathrm{~m})$
b. The graph shows five distinct sections. Briefly, and in general terms, describe the motion of the object in each of these sections.
c. Considering the whole journey, calculate the average velocity. $(1.4 \mathrm{~m} / \mathrm{s})$
d. Find the instantaneous velocity at $t=13 \mathrm{~s} .(8 \mathrm{~m} / \mathrm{s})$
e. Using an appropriate scale, draw a velocity-time graph from the position-time graph.

5. This graph below describes the motion of an object moving in a straight line. At the beginning it is going east. From the graph determine each of the following.
a. the object's displacement in the first $3.0 \mathrm{~s}(200 \mathrm{~m}[E])$
b. the object's displacement between $t=3.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$ (0)
c. the total displacement of the object in $14 \mathrm{~s}(0)$
d. the average velocity of the object from $t=0$ to $t=8.0 \mathrm{~s}(17.5 \mathrm{~m} / \mathrm{s}[\mathrm{E}])$

