

DISTANCE-TIME GRAPHS

Learning Goals

B2.2 - Analyse and interpret position-time graphs of motion in one dimension.

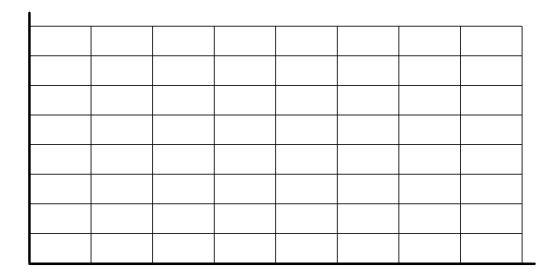
Success Criteria

П	What is a D-T graph?
H	What does the SLOPE mean on a D-T Graph?
	What is the relationship between slope and speed?
	Is it possible to have a vertical line on an D-T Graph?
	What does a horizontal slope on a D-T Graph mean?
	What is happening if the D-T Graph curves?

DISTANCE-TIME GRAPHS

A Distance-Time graph (or DT graph), is a graph that represents an object's motion. If the motion involves direction then it is a Displacement-Time graph (or Position-Time Graph). The general form looks like the following:

Ex: Graph the following on a distance-time grap	Ex:	Graph t	the follow	ving on a	distance-time	graph
---	-----	---------	------------	-----------	---------------	-------

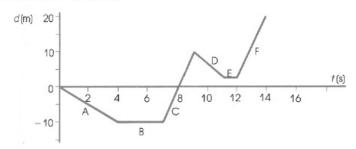

Time (s)	0	1	2	3	4	5	6	7	8
Distance (m)	0	2	4	6	8	8	8	4	0

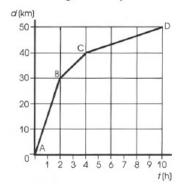
1.3 - Distance-Time Graphs

PHYSICS

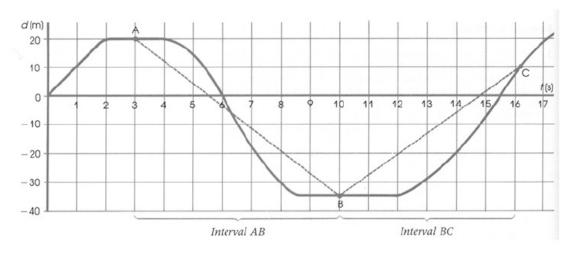
DISTANCE-TIME GRAPHS

In order to calculate the speed using a distance-time graph one must find the ${\it SLOPE}$ of the graph.

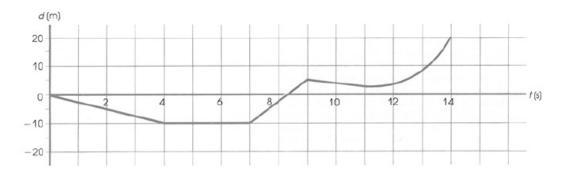

	DISTANCE-TIME GRAPHS
SLOPE F	ACTS:
1.	
2.	
3.	
4.	
-	
5.	

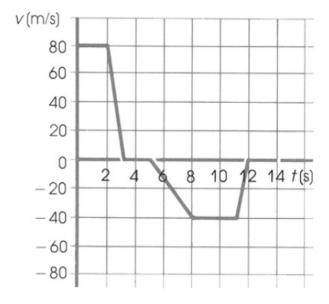

HOMEWORK

Motion Graphs Worksheet


1. Find the velocity in each section of the following position-time graph. $(-2.5 \, m/s)$, 0, $10 \, m/s$, $-3.8 \, m/s$, 0, $8.8 \, m/s$)

- 2. Using the graph below, determine the average velocity for these intervals:
 - a. AB (15 km/h)
 - b. AD (5.0 km/h)
 - c. BD (2.5 km/h)


- 3. Using the graph below, determine the average velocity for each of the following sections.
 - a. t = 0 s to t = 2 s (10 m/s)
 - b. t = 6 s to t = 12 s (-5.8 m/s)
 - c. t = 6 s to t = 15.5 s (0)



HOMEWORK

- The following graph is that of an object moving in a straight line. East is considered as the
 positive direction.
 - a. Determine the position of the object after 7.0 s. (-10 m)
 - b. The graph shows five distinct sections. Briefly, and in general terms, describe the motion of the object in each of these sections.
 - c. Considering the whole journey, calculate the average velocity. (1.4 m/s)
 - d. Find the instantaneous velocity at t = 13 s. (8 m/s)
 - e. Using an appropriate scale, draw a velocity-time graph from the position-time graph.

- This graph below describes the motion of an object moving in a straight line. At the beginning it is going east. From the graph determine each of the following.
 - a. the object's displacement in the first 3.0 s (200 m [E])
 - b. the object's displacement between t = 3.0 s and t = 5.0 s (0)
 - c. the total displacement of the object in 14 s(0)
 - d. the average velocity of the object from t = 0 to t = 8.0 s (17.5 m/s [E])

