PHYSICS				
SCALAR AND VECTOR QUANTITIES				
Learning Goals				
B2.1 - Use appropriate terminology related to kinematics.				
B2.5 - Solve problems involving distance, position, and displacement using a vector diagram.				
B3.2 - Distinguish between scalar and vector quantities as they relate to uniform and non-uniform motion.				
Success Criteria				
What is the difference between Scalars and Vectors?				
What is the difference between Distance and Displacement?				
What is the difference between Speed and Velocity?				

	PHYSICS
	SCALAR AND VECTOR QUANTITIES
A <i>scalar</i> qua	ntity is one that does not have a direction associated with it.
Ex:	
A vector q	uantity is one that does have a direction associated with it.
Ex:	
A vector	quantity is represented by an arrow that shows visually what the
vector lo	oks like:
Ex:	
Note th variabl	at a vector is represented by use of an arrow over top of the e and the direction in square brackets.

РН	YSICS
	SCALAR AND VECTOR QUANTITIES
speed vs. Velocit	Y
Speed:	•
Velocity:	
Ex 2. In the previo I) Calculate his	ous example 1, it takes John 2 hours to complete his walk. s speed.
b) Calculate his	s velocity.

	IYSICS			
	SCALAR AND VECTOR QUANTITIES			
ion vs. Disj	placement			
osition:	· _			
isplacemen	t: A vector quantity that measures the change in positio from start to finish.			
	Displacement = Change in Position			
Displacement = Final Position - Initial Position				
	$\overrightarrow{\Delta d} = \overrightarrow{d_2} - \overrightarrow{d_1}$			
NOTE: You can't subtract vector quantities.				
Ir	n order to solve you must ADD the OPPOSITE			
:: Jim (John	's brother) also goes for a walk.			
e starts at a	position of 10 km [W] and ends at a position of			

1.4 - Scalar and Vector Quantities

	PHYSICS					
	HOMEWORK					
	Displacement and Velocity Worksheet Show all work as you solve the following problems.					
1.	Calculate the total displacement of a mouse walking along a ruler, if it begins at the location x = 5cm, and then does the following: - It walks to x = 12cm - It then walks a displacement of -8cm - Lastly, it walks to the location x = 7cm					
2.	Find the average velocity (in m/s) of a bicycler that starts 150 meters north of town and is 1200 meters north of town after 30.0 minutes.					
3.	Explain what is wrong with the following statement: A man walked at an average velocity of 5.2m/s.					
4.	A school bus takes 0.53 hours to reach the school from your house. If the average speed of the bus is 19km/h, what is the displacement of the bus during the trip?					
5.	A girl participating in cross-country spends the afternoon practicing, and ends the practice completely tired from her hard work, despite the fact that her average velocity during the practice was 0.0m/s. Explain how this situation is possible.					

6. A hiker is at the bottom of a canyon facing the canyon wall closest to her. She is 280.5 meters from the wall and the sound of her voice travels at 340 m/s at that location. How long after she shouts will she hear her echo? (Be careful to consider why echoes happen.)

1.4 - Scalar and Vector Quantities

14. The following data was taken during a student's experiment with an object moving at a relatively constant velocity. Use the data to create a position-time graph (on the accompanying graph paper). Be sure to include a best-fit line. After the graph is completed, *use your best-fit line* to calculate the average speed of the object. Show speed calculations below.

Time (s)	Position (cm)
0.0	0.0
1.0	8.0
2.4	16.0
3.6	24.5
4.9	31.5
6.2	40.0