PHYSICS

ADDING VECTORS ALONG A STRAIGHT LINE

Learning Goals

B2.5 - Solve problems involving distance, position, and displacement using a vector diagram.
B3.2 - Distinguish between scalar and vector quantities as they relate to uniform and non-uniform motion.
Success Criteria

\squareWhat is a displacement vector?

\squareWhat is the rule for adding vectors?

\squareWhen solving algebraically, why is it important to define which direction is positive?

PHYSICS

ADDING VECTORS ALONG A STRAIGHT LINE

Linear Vectors can be added adding vectors, \qquad
\qquad If we are signs are used to indicate \qquad
and \qquad
\qquad
\qquad .

Example: Madeleine and Gordon went to subway for dinner. They drove 15 km [S] and then $8 \mathrm{~km}[\mathrm{~N}]$ to the movie theatre. What was their resultant displacement?

Steps for Determining the Resultant Displacement using Algebra

1. \qquad
2. \qquad
3.

4. \qquad
5. \qquad

PHYSICS

ADDING VECTORS ALONG A STRAIGHT LINE

Position vs. Displacement
Position:

Displacement: A vector quantity that measures the change in position from start to finish.

Displacement $=$ Change in Position
Displacement $=$ Final Position - Initial Position

$$
\overrightarrow{\Delta \mathrm{d}}=\overrightarrow{\mathrm{d}_{2}}-\overrightarrow{\mathrm{d}_{1}}
$$

NOTE: You can't subtract vector quantities.
In order to solve you must ADD the OPPOSITE.

Ex: Jim (John's brother) also goes for a walk.
He starts at a position of 10 km [W] and ends at a position of 2 km [W]. What is John's displacement from his initial position?

1.5 - Adding Vectors in 1-D

PHYSICS

ADDING VECTORS ALONG A STRAIGHT LINE

Position-Time Graphs

Consider the following Position-Time Graph:

a) What is the distance travelled from 0-45s?
b) What is the objects average speed during this 45 s?
c) What is the object's displacement from $0-45$ s?
d) What is the object's velocity during this 45 s?

PHYSICS

ADDING VECTORS ALONG A STRAIGHT LINE

LEARNING GOALS

1. What is a displacement vector?
2. What is the rule for adding Vectors?
3. When solving algebraically, why is it important to define which direction is positive?

HOMEWORK

Textbook:
Pg. 11 \#1-3
Pg. 13 \#1-5
Pg. 20 \#1-8

