

A Distance-Time graph (or DT graph), is a graph that represents an object's motion. The general form looks like the following:

Ex: Graph the following on a distance-time graph

In order to calculate the speed using a distance-time graph one must find the SLOPE of the graph.

SLOPE FACTS:
1.

2.

3.

4.

5.

HOMEWORK

Motion Graphs Worksheet

1. Find the velocity in each section of the following position-time graph. $(-2.5 \mathrm{~m} / \mathrm{s}, 0$, $10 \mathrm{~m} / \mathrm{s},-3.8 \mathrm{~m} / \mathrm{s}, 0,8.8 \mathrm{~m} / \mathrm{s}$)
$d(\mathrm{~m})$

2. Using the graph below, determine the average velocity for these intervals:
a. $\mathrm{AB}(15 \mathrm{~km} / \mathrm{h})$
b. $\mathrm{AD}(5.0 \mathrm{~km} / \mathrm{h})$
c. $\mathrm{BD}(2.5 \mathrm{~km} / \mathrm{h})$

3. Using the graph below, determine the average velocity for each of the following sections.
a. $\quad t=0 \mathrm{~s}$ to $t=2 \mathrm{~s}(10 \mathrm{~m} / \mathrm{s})$
b. $t=6 \mathrm{~s}$ to $t=12 \mathrm{~s}(-5.8 \mathrm{~m} / \mathrm{s})$
c. $t=6 \mathrm{~s}$ to $t=15.5 \mathrm{~s}$ (0)

HOMEWORK

4. The following graph is that of an object moving in a straight line. East is considered as the positive direction.
a. Determine the position of the object after 7.0 s . $(-10 \mathrm{~m})$
b. The graph shows five distinct sections. Briefly, and in general terms, describe the motion of the object in each of these sections.
c. Considering the whole journey, calculate the average velocity. $(1.4 \mathrm{~m} / \mathrm{s})$
d. Find the instantaneous velocity at $t=13 \mathrm{~s} .(8 \mathrm{~m} / \mathrm{s})$
e. Using an appropriate scale, draw a velocity-time graph from the position-time graph.

5. This graph below describes the motion of an object moving in a straight line. At the beginning it is going east. From the graph determine each of the following.
a. the object's displacement in the first $3.0 \mathrm{~s}(200 \mathrm{~m}[E])$
b. the object's displacement between $t=3.0 \mathrm{~s}$ and $t=5.0 \mathrm{~s}$ (0)
c. the total displacement of the object in $14 \mathrm{~s}(0)$
d. the average velocity of the object from $t=0$ to $t=8.0 \mathrm{~s}(17.5 \mathrm{~m} / \mathrm{s}[\mathrm{E}])$

