ACCELERATION

Acceleration - As a scalar - The rate of change in Speed

- As a vector - The rate of change in Velocity

ACCELERATION $=\frac{\text { Change in SPEED }}{\text { TIME }}$

$$
\text { ACCELERATION }=\frac{\text { Change in VELOCITY }}{\text { TIME }}
$$

$\boldsymbol{\Delta} \boldsymbol{v}$ is the change of speed/velocity and can be written as $\boldsymbol{v}_{\mathbf{2}}-\boldsymbol{v}_{\mathbf{1}}$ (Where v_{2} is final speed and v_{1} is initial speed)

Additional Formulae

PHYSICS

ACCELERATION

Acceleration Units

The units for acceleration are slightly complex. Refering to the formula it is a SPEED (distance per time) divided by a TIME. This means that an acceleration unit will be a distance per time per time.

For example, a car that accelerates $10 \mathrm{~km} / \mathrm{h}$ every second would be said to be accelerating at $10 \mathrm{~km} / \mathrm{h} / \mathrm{s}$.

There will be times where the time units are the same. For example, a car that accelerates at $5 \mathrm{~m} / \mathrm{s}$ every second would be said to be accelerating at $5 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ or $5 \mathrm{~m} / \mathbf{s}^{2}$.

Ex: Calculate the acceleration of a plane that speeds up from $10 \mathrm{~m} / \mathrm{s}$ to $60 \mathrm{~m} / \mathrm{s}$ in 5.0 seconds.

ACCELERATION

Ex: An airplane lands on a runway travelling $250 \mathrm{~km} / \mathrm{h}$ and slows down at a rate of $20 \mathrm{~km} / \mathrm{h} / \mathrm{s}$. How fast will the plane be going after 8.5 seconds?

Ex: In order to make an upcoming turn, a car needs to be traveling a speed of $12 \mathrm{~m} / \mathrm{s}$. If the car is originally travelling at $90 \mathrm{~km} / \mathrm{h}$ and the breaks can decelerate the car at 3 $\mathrm{m} / \mathrm{s} / \mathrm{s}$. How long in advance should the driver initiate breaking in order to safely take the turn?

1. A roller coaster car rapidly picks up speed as it rolls down a slope. As it starts down the slope, its speed is $4 \mathrm{~m} / \mathrm{s}$. But 3 seconds later, at the bottom of the slope, its speed is $22 \mathrm{~m} / \mathrm{s}$. What is its average acceleration?
2. A cyclist accelerates from $0 \mathrm{~m} / \mathrm{s}$ to $8 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What is his acceleration? Is this acceleration higher than that of a car which accelerates from 0 to $30 \mathrm{~m} / \mathrm{s}$ in 8 seconds?
3. A car advertisement states that a certain car can accelerate from rest to $70 \mathrm{~km} / \mathrm{h}$ in 7 seconds. Find the car's average acceleration.
4. A lizard accelerates from $2 \mathrm{~m} / \mathrm{s}$ to $10 \mathrm{~m} / \mathrm{s}$ in 4 seconds. What is the lizard's average acceleration?
5. If a Ferrari, with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$, accelerates at a rate of $50 \mathrm{~m} / \mathrm{s} / \mathrm{s}$ for 3 seconds, what will its final velocity be?
6. A car traveling at a speed of $30.0 \mathrm{~m} / \mathrm{s}$ encounters an emergency and comes to a complete stop. How much time will it take for the car to stop if it decelerates at $-4.0 \mathrm{~m} / \mathrm{s}^{2}$?
7. If a car can go from 0 to $100 \mathrm{~km} / \mathrm{hr}$ in 8.0 seconds, what would be its final speed after 5.0 seconds if its starting speed were $80 \mathrm{~km} / \mathrm{hr}$?
8. A cart rolling down an incline for 5.0 seconds has an acceleration of $4.0 \mathrm{~m} / \mathrm{s}^{2}$. If the cart has a beginning speed of $2.0 \mathrm{~m} / \mathrm{s}$, what is its final speed?
9. A helicopter's speed increases from $25 \mathrm{~m} / \mathrm{s}$ to $60 \mathrm{~m} / \mathrm{s}$ in 5 seconds. What is the acceleration of this helicopter?
10. As she climbs a hill, a cyclist slows down from $25 \mathrm{mi} / \mathrm{hr}$ to $6 \mathrm{mi} / \mathrm{hr}$ in 10 seconds. What is her deceleration?
11. A motorcycle traveling at $25 \mathrm{~m} / \mathrm{s}$ accelerates at a rate of $7.0 \mathrm{~m} / \mathrm{s}^{2}$ for 6.0 seconds. What is the final speed of the motorcycle?
12. A car starting from rest accelerates at a rate of $8.0 \mathrm{~m} / \mathrm{s} / \mathrm{s}$. What is its final speed at the end of 4.0 seconds?
13. After traveling for 6.0 seconds, a runner reaches a speed of $10 \mathrm{~m} / \mathrm{s}$. What is the runner's acceleration?
14. A cyclist accelerates at a rate of $7.0 \mathrm{~m} / \mathrm{s}^{2}$. How long will it take the cyclist to reach a speed of $18 \mathrm{~m} / \mathrm{s}$?
15. A skateboarder traveling at 7.0 meters per second rolls to a stop at the top of a ramp in 3.0 seconds. What is the skateboarder's acceleration?
