BRINGING IT ALL TOGETHER (More Acceleration Formulas)
So Far ...

And Now ...

Remember - when dealing with velocities (or accelerations with direction) its important to establish which direction is Positive.

Ex: A ball is dropped from rest and accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ towards the ground for 3 seconds. How far does it fall?

Ex: A ball is thrown up in the air with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ [up] and accelerates at $10 \mathrm{~m} / \mathrm{s}^{2}$ [down] towards the ground for 5 seconds. How far does the ball travel?

Ex: A car travelling at $80 \mathrm{~km} / \mathrm{h}(22.22 \mathrm{~m} / \mathrm{s})$ decelerates to $50 \mathrm{~km} / \mathrm{h}$ $(13.88 \mathrm{~m} / \mathrm{s})$ in 2 seconds. How far does it travel over this time period?

Ex: The CN Tower is 553 m tall. If you dropped a watermelon off the top how fast would it be going when it hits the ground? The acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$.

Ex: Aaron while driving his car at $100 \mathrm{~km} / \mathrm{h}(27 \mathrm{~m} / \mathrm{s})$ decides to text message his friend. While he takes his eyes off the road he tragically hits a tree, stopping him in 0.3 seconds. What is his acceleration? What distance does he cover during the impact?

1. Shelly starts from rest on her bicycle at the top of a hill. After 6.0 s she has reached a final velocity of $14 \mathrm{~m} / \mathrm{s}$. What is Shelly's acceleration?
2. A ball is rolling at $4.80 \mathrm{~m} / \mathrm{s}$ over level ground when it encounters a ramp, which gives it an acceleration of $-0.875 \mathrm{~m} / \mathrm{s}^{2}$. If the ramp is 0.750 m long, what is the final velocity of the ball when it reaches the top of the ramp?
3. Bill's motorcycle can accelerate at $7.05 \mathrm{~m} / \mathrm{s}^{2}$ at a certain RPM and gear. How far, starting from rest, will Bill travel in the first 2.50s?
4. Lisa drops a ball. If the ball accelerates at $9.80 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take the ball to reach a velocity of $15.0 \mathrm{~m} / \mathrm{s}$?
5. Big Bob is on his Harley and moving at $14.0 \mathrm{~m} / \mathrm{s}$. He then accelerates to a velocity of $25.0 \mathrm{~m} / \mathrm{s}$ over a distance of 0.250 km . What is Big Bob's acceleration?
6. Chuck's car is moving at $65.0 \mathrm{~m} / \mathrm{s}$ when he suddenly accelerates his car at $15.0 \mathrm{~m} / \mathrm{s}^{2}$ for 3.00 s . How far did Chuck, and car, travel while he was accelerating?
7. Atom Ant is traveling with an initial velocity of $20.0 \mathrm{~cm} / \mathrm{s}$. He begins to accelerate at a rate of $8.00 \mathrm{~cm} / \mathrm{s} 2$ for 5.00 s . What is his total displacement in the 5.00 second interval? What is his displacement in the last second?
8. A skier starts from rest and slides 9.00 m down a slope in 3.00 s . In what time after starting will the skier acquire a velocity of $24.0 \mathrm{~m} / \mathrm{s}$? Assume constant acceleration. Answer: 12.0 s .
9. A bus moving at a speed of $20.0 \mathrm{~m} / \mathrm{s}$ begins to slow at a rate of $3.00 \mathrm{~m} / \mathrm{s}$ each second. Find how far it goes before stopping. Answer: 66.7 m
10. The engine of a model rocket accelerates the rocket vertically upward for 2.00 s such that its speed is given by the following data. At $t=0$, its speed is zero; at $t=1.00 \mathrm{~s}$, its speed is $5.00 \mathrm{~m} / \mathrm{s}$; at $t=2.00 \mathrm{~s}$, its speed is $10.0 \mathrm{~m} / \mathrm{s}$, at $t=3.00 \mathrm{~s}$, its speed is $15.0 \mathrm{~m} / \mathrm{s}$, and at $t=4.00 \mathrm{~s}$ its speed is $20.0 \mathrm{~m} / \mathrm{s}$. Plot a velocity vs. time graph for this motion and from it determine the average acceleration. What do you expect its acceleration to be at $t=5.00 \mathrm{~s}$? Why? What will its velocity be at $t=10.0 \mathrm{~s}$ if it continues at this acceleration? How far will it have traveled after 10 s ?
11. Until recently, the world's land speed record was held by Colonel John P. Stapp, USAF. On March 19, 1954, he rode a rocket-propelled sled that moved down the track at $632 \mathrm{mi} / \mathrm{hr}$. He and the sled were safely brought to rest in 1.40 s . Determine the acceleration he experienced and the distance he traveled during this acceleration.
12. A go-cart travels the first half of a 100 m track with a constant speed of $5.00 \mathrm{~m} / \mathrm{s}$. In the second half of the track, it experiences a mechanical problem and slows down at a rate of $0.200 \mathrm{~m} / \mathrm{s} 2$. How long does it take the go-cart to travel the 100 m distance?
13. A car moving at $30.0 \mathrm{~m} / \mathrm{s}$ slows uniformly to a speed of $10.0 \mathrm{~m} / \mathrm{s}$ in a time of 5.00 s . Determine the acceleration of the car and the distance it moves in the third second. Answers: $-4.00 \mathrm{~m} / \mathrm{s} 2,20.0 \mathrm{~m}$.
14. The velocity of a train is reduced uniformly from $15.0 \mathrm{~m} / \mathrm{s}$ to $7.00 \mathrm{~m} / \mathrm{s}$ while traveling a distance of 90.0 m . a. Compute the acceleration. b. How much farther will the train travel before coming to rest, provided the acceleration remains constant? Answers: $-0.980 \mathrm{~m} / \mathrm{s} 2,25.0 \mathrm{~m}$.
15. A bullet is fired at right angles through a board 10.0 cm thick. If the initial speed of the bullet is $400 \mathrm{~m} / \mathrm{s}$, and it the speed as it emerges is $300 \mathrm{~m} / \mathrm{s}$, find the deceleration of the bullet and the time it is in contact with the board.
16. A late passenger, sprinting at $8.00 \mathrm{~m} / \mathrm{s}$, is 30.0 m away from the rear end of a train when the train starts from rest with a constant acceleration of $1.00 \mathrm{~m} / \mathrm{s} 2$. Will the passenger catch the train, and if so, how far must he run to do so? How long will he have to run?
