PHYSICS

ACCELERATION IN 2D

Recall: In order to calculate Acceleration ...

$$
\vec{a}=\frac{\vec{v}_{2}-\vec{v}_{1}}{t}
$$

Using this formula we can calculate acceleration when the velocities are in multiple directions. All one has to do is to find the resultant velocity and divide it by the amount of time that passes.

To this point, we have only $A D D E D$ vectors, In the formula above, vectors are being SUBTRACTED. To avoid the subtraction and convert back to an addition question we will ...

Ex: What is the opposite vector to: $80 \mathrm{~km} / \mathrm{h}\left[\mathrm{N} \mathrm{30}{ }^{\circ} \mathrm{E}\right]$?

A bus moving at $80 \mathrm{~km} / \mathrm{h}\left[\mathrm{N} 30^{\circ} \mathrm{E}\right]$ goes around a gentle curve and 30.0 s later, he is moving at $80 \mathrm{~km} / \mathrm{h}[E]$. Find acceleration in $\mathrm{km} / \mathrm{h} / \mathrm{s}$.

PHYSICS

ACCELERATION IN 2D

Homework

25. A car with a velocity of $25 \mathrm{~m} / \mathrm{s}$ [E] changes its velocity to $25 \mathrm{~m} / \mathrm{s}$ [S$]$ in 15 s . Calculate the car's average acceleration.
26. A watercraft with an initial velocity of $6.4 \mathrm{~m} / \mathrm{s}[\mathrm{E}]$ undergoes an average acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}[\mathrm{~S}]$ for 2.5 s . What is the final velocity of the watercraft?
27. A hockey puck rebounds from a board as shown in Figure 16. The puck is in contact with the board for 2.5 ms . Determine the average acceleration of the puck over the interval.

Figure 16
Motion of the puck
28. A passenger in a hot-air balloon throws a ball with an initial unknown velocity. The ball accelerates at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ [down] for 2.0 s , at which time its instantaneous velocity is $24 \mathrm{~m} / \mathrm{s}$ [45° below the horizontal]. Determine the ball's initial velocity.

Answers

25. $2.4 \mathrm{~m} / \mathrm{s}^{2}\left[45^{\circ} \mathrm{S}\right.$ of W$]$
26. $8.1 \mathrm{~m} / \mathrm{s}\left[38^{\circ} \mathrm{S}\right.$ of E$]$
27. $7.3 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}\left[7.5^{\circ} \mathrm{N}\right.$ of W]
28. $17 \mathrm{~m} / \mathrm{s}\left[10^{\circ}\right.$ above the horizontal]
