

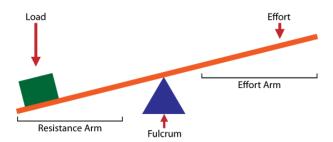
SIMPLE MACHINES

INTRODUCTION

A machine is a device that helps us perform tasks. It is designed to achieve one of five main functions

- 1.
- 2.
- 3.
- 4.
- **5**.

Simple machines can be split into two families: the **Lever Family** of machines and the **Inclined Plane Family** of machines.


SIMPLE MACHINES

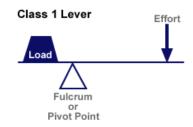
THE LEVER FAMILY OF MACHINES

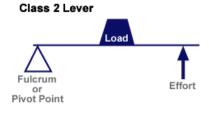

The lever family of machines consists of the **lever**, the **pulley**, the **wheel and axle**, and **gears**.

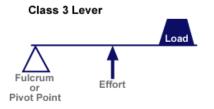
1. Lever

 A rigid bar that can rotate freely around a pivot called the fulcrum. An effort force, F_E, is applied to one part of the lever in order to move the load which exerts a force, F_L, on some other part of the lever.

There are three classes of levers:


2nd class - Load is in the middle





2.1 - Simple Machines

SPH4C

SIMPLE MACHINES

2. Pulley

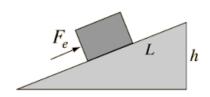
A wheel with a grooved rim in which a rope runs.

3. Wheel and Axle

A large diameter disk connected to a small diameter rod.

4. Gears

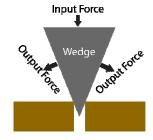
Toothed wheels of different diameters.


SIMPLE MACHINES

THE INCLINED PLANE FAMILY OF MACHINES

The inclined family of machines consists of the **inclined plane**, the **wedge**, and the **screw**.

1. Inclined Plane


A ramp. Less force is required to move an object up a ramp then raise it vertically.

2. Wedge

Double inclined plane.

3. Screw

An inclined plane wrapped around a central shaft.

SIMPLE MACHINES - LAB

Instructions/Questions

- 1. What is the measured weight of your object? Load =
- 2. How is the Mechanical Advantage of a pulley system calculated?

A. Set up your pulley, weight and rope as shown at right.

1. What is the theoretical Mechanical Advantage of this system?

MA = _____

2. What is the required force to raise object higher?

Effort =

3. Calculate the actual Mechanical Advantage of the pulley system using the following equation:

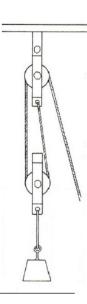
$$MA_{actual} = \frac{Load}{Effort} =$$

4. How does this compare to the theoretical MA from above?

B. Support your load according to the pulley setup shown at right.

1. What is the theoretical Mechanical Advantage of this system?

MA = _____


2. What is the required force to raise object higher?

Effort = _____

3. Calculate the actual Mechanical Advantage of the pulley system using the following equation:

$$MA_{actual} = \frac{Load}{Effort} =$$

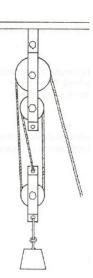
4. How does this compare to the theoretical MA from above?

SIMPLE MACHINES - LAB

C. Add another pulley to your system as shown to the right.

1. What is the theoretical Mechanical Advantage of this system?

MA =


2. What is the required force to raise object higher?

Effort =

3. Calculate the actual Mechanical Advantage of the pulley system using the following equation:

$$MA_{actual} = \frac{Load}{Effort} =$$

4. How does this compare to the theoretical MA from above?

D. Add another pulley (if time permits). Draw it to the right.

1. What is the theoretical Mechanical Advantage of this system?

MA = _____

2. What is the required force to raise object higher?

Effort = ____

3. Calculate the actual Mechanical Advantage of the pulley system using the following equation:

$$MA_{actual} = \frac{Load}{Effort} =$$

4. How does this compare to the theoretical MA from above?

SIMPLE MACHINES - LAB

In general, were the theoretical mechanical advantages similar to the actual ones?
in general, were the theoretical incentanteal advantages similar to the actual ones:

Discussion

Results

- What were some sources of error in your experimental procedure?
- 2. Calculate the percent error in the mechanical advantage of the actual pulleys compared to the theoretical pulleys.

$$\% Error = \left| \frac{Theoretical \, Value - Actual \, Value}{Actual \, Value} \right| * 100$$

Pulley Setup A:

Pulley Setup B:

Pulley Setup C (and D - if attempted):

CONCLUSION - What are your experimental findings?