

Torque (T): The turning effect caused by a force on a rigid body around an axis. Torque can be calculated using the equation:

$$
\begin{aligned}
& T- \\
& F- \\
& d-
\end{aligned}
$$

NOTE: As the distance from the axis of rotation decreases, the force required to produce the same torque increases.

Ex 1. Calculate the magnitude of the torque when you apply $84 N$ of force on a 0.25 m long wrench.

The magnitudes of the effort torque, T_{E}, and the load torque, T_{L}, can be found for a lever using the equations:

Ex 2. You are using a large plank to move a rock. The effort force has a magnitude of 450 N , and the distance from the effort force to the fulcrum is 2.2 m . What is the magnitude of the torque produced?

A rigid body is said to be in static equilibrium if it does not move in any direction and does not rotate.

LAW OF THE LEVER

When a lever is in static equilibrium, the magnitude of the effort torque is equal to the magnitude of the load torque. This can be written using the equation:

Ex: 3. You are lifting a load force of 1800 N with a 3 m long lever. The fulcrum is 0.45 m from the load. Calculate the effort force.

Pg. 83 \#3,6,7

Pg. 84 \#10

Pg. 86 \#12,14
Pg. 87 \#2-9

