

TYPES OF ENERGY

TYPES OF ENERGY

Energy is transferred when work is done, but it is also transformed from one kind to another. (*Law of Conservation of Energy*)

TYPES

<u>Gravitational Potential Energy</u> - do work as it falls.

Ex:

Kinetic Energy -

TYPES OF ENERGY

Heat Energy -

Ex:

Radiant Energy -

TYPES OF ENERGY

Chemical Potential Energy -

Ex:

Elastic Energy -

TYPES OF ENERGY

Electrical Energy -

Nuclear Energy -

TYPES OF ENERGY

Gravitational Potential Energy

Definition:

Formula:

$$E_g = mgh$$

Eg -

m -

g -

h -

Ex: What is the gravitational energy of a 4.0kg rock lifted 25m above the ground?

TYPES OF ENERGY

KINETIC ENERGY

Definition:

Formula:

$$E_k = \frac{1}{2}mv^2$$

Ek -

m -

v .

Ex: What is the kinetic energy of a 6.0kg curling stone travelling at 4.0 m/s?

TYPES OF ENERGY

Homework

Pg. 231 #1 - 3 Pg. 234 #1 Pg. 235 #1 - 6