

## **RESONANCE**

#### **MECHANICAL RESONANCE AND STANDING WAVES**

### **Resonant Frequency:**

### Ways of Obtaining Resonant Frequency

1. Mechanical Resonance -

Ex.

http://www.youtube.com/watch?v=j-zczJXSxnw

2. Acoustic Resonance -

Ex.

http://www.youtube.com/watch?v=nHSGd2X1nc8&feature=related http://www.youtube.com/watch?v=oXV45t6wlWU&feature=related

**STANDING WAVES** 

**Standing Wave:** 



## **PHYSICS**

## **RESONANCE**

#### **MODES OF VIBRATION**

#### **Strings**

A vibrating string stretched between two fixed points will have nodes at each end. The simplest mode a string can vibrate is called the **FUNDAMENTAL FREQUENCY** or the **1st Harmonic**.

**FUNDAMENTAL FREQUENCY**1st HARMONIC

The string may also vibrate in multiples of the fundamental frequency, called *Harmonics*. These additional modes of vibration that produce a viable sound are called *Overtones*.

1st OVERTONE 2nd HARMONIC

2nd OVERTONE 3rd HARMONIC

| PHYSICS                                            |
|----------------------------------------------------|
| RESONANCE                                          |
| MODES OF VIBRATION                                 |
| COLUMNS                                            |
| Open Columns - Open columns are open at both ends. |
| FUNDAMENTAL FREQUENCY 1st HARMONIC                 |
|                                                    |
| 1st OVERTONE                                       |
| 2nd HARMONIC                                       |
|                                                    |
| 2nd OVERTONE                                       |
| 3rd HARMONIC                                       |
|                                                    |



| 4 14                                                            | RESONANCE                                   |  |  |  |  |
|-----------------------------------------------------------------|---------------------------------------------|--|--|--|--|
| MODES OF VIBRATION                                              |                                             |  |  |  |  |
| COLUMNS                                                         |                                             |  |  |  |  |
| Closed Columns-                                                 | Closed columns are closed at one end.       |  |  |  |  |
| FUNDAMENTAL FREQU<br>1st HARMONIC                               | ENCY                                        |  |  |  |  |
|                                                                 |                                             |  |  |  |  |
| The second harmonic sound.                                      | (double the fundamental) does not produce a |  |  |  |  |
| 2nd HARMONIC<br>NOT an OVERTONE<br>(No Sound)                   |                                             |  |  |  |  |
| Therefore the 1st overtone doesn't occur until the 3rd harmonic |                                             |  |  |  |  |
| 1st OVERTONE<br>3rd HARMONIC                                    |                                             |  |  |  |  |
|                                                                 |                                             |  |  |  |  |
| 2nd OVERTONE<br>5th HARMONIC                                    |                                             |  |  |  |  |
|                                                                 |                                             |  |  |  |  |



# PHYSICS

## **RESONANCE**

### MODES OF VIBRATION

#### **SUMMARY**

|                              | STRINGS | OPEN<br>COLUMN | CLOSED<br>COLUMN |
|------------------------------|---------|----------------|------------------|
| <b>Fundamental Frequency</b> |         |                |                  |
| 1st Overtone                 |         |                |                  |
| 2nd Overtone                 |         |                |                  |
| 3rd Overtone                 |         |                |                  |

(#) - The Harmonic

No two sounds are exactly alike. Sounds can differ in three different ways:

Pitch -

High Pitched

Low Pitched

Amplitude -

High Amplitude

Low Amplitude

**Quality** -

**High Quality** 

**Low Quality** 



# **PHYSICS**

## **RESONANCE**

Ex. A standing wave is produced on a 6.0 m rope using a 5.5 Hz source. If there are three antinodes between the ends, what is the speed of the waves that produced the pattern?

Ex: An organ pipe, open at both ends, is 2 m long. A sound is played through the pipe at the 3rd harmonic. If the speed of sound in the room is 340 m/s, what is the frequency of the sound?



# PHYSICS

## **RESONANCE**

Ex: A closed pipe has a length of 3 m. A sound at the 5 resonant length is produced by the column. If the temperature of the room is 22°C, what is the frequency of the sound?